SEMI-FND: Stacked ensemble based multimodal inferencing framework for faster fake news detection

نویسندگان

چکیده

Fake News Detection (FND) is an essential field in natural language processing that aims to identify and check the truthfulness of significant claims a news article decide veracity. FND finds its uses preventing social, political, national damage caused due misrepresentation facts may harm particular section society. Further, with explosive rise fake dissemination over social media, including images text, it has become imperative faster more accurately. This work investigates novel multimodal stacked ensemble-based framework (SEMI-FND) for detection. Focus also kept on ensuring performance fewer parameters. A deep unimodal analysis done image modality NasNet Mobile as most appropriate model improve further. For ensemble BERT ELECTRA been used. The approach was evaluated Twitter MediaEval Dataset Weibo Corpus. suggested offered 85.80% 86.83% accuracy datasets. These reported metrics are superior when compared similar recent works. reports reduction training parameters potential counterparts. developed overall parameter at least 20% 2% 60% text modality, respectively. Therefore, based investigations presented, concluded applying ensembling significantly improves other approaches while improving speed.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fake News Detection using Stacked Ensemble of Classifiers

Fake news has become a hotly debated topic in journalism. In this paper, we present our entry to the 2017 Fake News Challenge which models the detection of fake news as a stance classification task that finished in 11th place on the leader board. Our entry is an ensemble system of classifiers developed by students in the context of their coursework. We show how we used the stacking ensemble met...

متن کامل

Exploiting Tri-Relationship for Fake News Detection

Social media for news consumption is becoming popular nowadays. The low cost, easy access and rapid information dissemination of social media bring benefits for people to seek out news timely. However, it also causes the widespread of fake news, i.e., low-quality news pieces that are intentionally fabricated. The fake news brings about several negative effects on individual consumers, news ecos...

متن کامل

Automatic Detection of Fake News

The proliferation of misleading information in everyday access media outlets such as social media feeds, news blogs, and online newspapers have made it challenging to identify trustworthy news sources, thus increasing the need for computational tools able to provide insights into the reliability of online content. In this paper, we focus on the automatic identification of fake content in online...

متن کامل

Stance Detection for Fake News Identification

The latest election cycle generated sobering examples of the threat that fake news poses to democracy. Primarily disseminated by hyper-partisan media outlets, fake news proved capable of becoming viral sensations that can dominate social media and influence elections. To address this problem, we begin with stance detection, which is a first step towards identifying fake news. The goal of this p...

متن کامل

ensemble semi-supervised framework for brain mris tissue segmentation

brain mr images tissue segmentation is one of the most important parts of the clinical diagnostic tools. pixel classification methods have been frequently used in the image segmentation with two supervised and unsupervised approaches up to now. supervised segmentation methods lead to high accuracy but they need a large amount of labeled data, which is hard, expensive and slow to obtain. moreove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Expert Systems With Applications

سال: 2023

ISSN: ['1873-6793', '0957-4174']

DOI: https://doi.org/10.1016/j.eswa.2022.119302